ANALYSIS OF SOIL PHOSPHATE AS A TOOL IN ARCHAEOLOGY, CASE STUDY, RIVI, NORTH KHORASAN, IRAN

Document Type : Original Article

Authors

1 Department of Environment, Faculty of Environment, the University of Jan Evangelista in Ústí nad Labem (UJEP), Ústí nad Labem, Czech Republic.

2 Department of Environmental Science, School of Natural Resources and Desert Studies, Yazd University, Yazd, Iran.

Abstract

Phosphate is unique among the elements in being a sensitive and persistent indicator of human occupation. It has long been of interest to archaeologists because of its potential to inform them about the presence of past human activity and to offer clues regarding the type and intensity of human occupation. In fact, the soil of settlements is part of the phosphorus reservoir. The reconstruction of the human activities areas of archaeological sites using soil phosphate analysis is a well-known technique. This study aims to identify and compare the activity area at ancient mounds of Rivi through the measurement of the quantity of phosphates in the soil. In this study, 29 soil samples were collected from the study area, and phosphorus quantity was measured using Spectrophotometry. Multivariate statistical methods were used to classify the obtained results. The results showed that the phosphorus concentrations in the ancient areas were higher than in the control area, and among the ancient areas, the phosphorus quantity related to Rivi B was higher than in other mounds. Previous studies have shown that the Rivi area has been inhabited from around 2900 years ago to the last Sassanian years (1,500 years ago), and in the middle of the Islamic age (1000 years ago), it was a great village. In total, the archaeological site of Rivi was inhabited during the Iron Age, Achaemenid, Parthian, Sassanid, and Islamic periods, and that is why there was a high concentration of phosphorus in the Rivi area compared to the control area.

Keywords


چکیده: فسفر در میان عناصر که نشانگر حساسیت و فعالیت‌های پایدار انسانی است، منحصر به فرد می‌باشد. باستان‌شناسان به دلیل پتانسیل فسفات در آگاهی بخشیدن به آن‌ها در مورد فعالیت‌های انسان در گذشته و ارائه سرنخ‌هایی در مورد نوع و شدت فعالیت انسانی، به مدت طولانی علاقه‌مند بوده‌اند. در واقع خاک سکونت‌گاه‌ها بخشی از مخزن فسفر است. بازسازی فعالیت‌های انسانی در مناطق باستان‌شناسی با استفاده از تجزیه و تحلیل فسفات خاک شیوه‌ای شناخته شده است. هدف از این تحقیق بررسی و مقایسه مکان‌های فعالیت در تپه‌های ریوی، استان خراسان شمالی با استفاده از آنالیز شیمیایی فسفات خاک می‌باشد. جهت انجام مطالعه 29 نمونه خاک از منطقه مورد مطالعه برداشت شد و غلظت فسفر با استفاده از دستگاه اسپکتروفتومتری اندازه‌گیری شد. برای طبقه‌بندی نتایج به‌دست‌آمده از روش‌های چند متغیری آماری استفاده شد. نتایج نشان داد که غلظت فسفر در مناطق باستانی بسیار بیشتر از منطقه شاهد است و در بین مناطق داخل محوطه، مقادیر نمونه‌های مربوط به تپه ریوی  Bبیشتر از تپه‌های دیگر بود. تحقیقات پیشین نشان داد که محوطه ریوی از حدود 2900 سال پیش تا سال‌های پایانی دوران ساسانی (1500 سال پیش) با کاربری شهری مسکونی بوده است و در دوران میانه اسلامی (1000سال پیش)، روستایی بزرگ بوده است. در مجموع محوطه ریوی در دوره‌های آهن، هخامنشی، اشکانی، ساسانی و اسلامی مسکونی بوده است. در حقیقت غلظت بالای فسفر در محوطه ریوی نسبت به منطقه شاهد به همین دلیل است.

کلمات کلیدی: فسفر، آنالیز شیمیایی خاک، تپه‌های ریوی، فعالیت‌های انسان باستان، روش آنالیز اسپکتروفتومتری، خراسان شمالی.

Aston, M. A., Martin, M. H. and Jackson, A.W. (1998). THE USE OF HEAVY METAL SOIL ANALYSIS FOR ARCHAEOLOGICAL SURVEYING. Chemosphere, Vol. 37, No. 3, 465-477.
Aston, M. A., Martin, M. H. and Jackson, A. W. (1998). The potential for heavy metal soil analysis on low status archaeological sites at Shapwick, Somerset. ANTIQUITY, 72, 838-847.
Aspinnal, A., Warren, S. E., Cmmmett, L. G. and Newton, R.G. (1972). Neutron activation analysis of faience beads. Archaeometry, 14, 27-40.
Bachmann, H. g. (1982). The Identification of Slags from Archaeological sites, 37pp. Occasional Publication No.6. The Institute of Archaeology, London.
Blum, W. E. H., Warkentin, B. P. and Frossard, E. (2006). Soil, human society and the environment. In Frossard, E., Blum, W. E. H & Warkentin, B. P. (Eds.). Function of soils for human societies and the environment. The Geological Society, London, 1-8.
Entwistle, J. A., Dodgshon, R. A. and Abrahams, P.W. (1998). Multi-element analysis of soils from Scottish historical sites: interpreting land-use history through the physical and geochemical analysis of soil, Journal of Archaeological Science, 25, 53-68
Farrell, M.P. (1997). The garden city hypothesis in the Maya Lowlands, PH. D dissertation, Department of Geography, University of Cincinnati.
Gurney, D. A. (1985). Phosphate analysis of soils: a guide for the field archaeologist. Technical Paper, no. 3.
Holliday, V.T. and Gartner, W.G. (2007). Methods of soil P analysis in archaeology. Journal of Archaeological Science, 34, 301-333.
Hjulström, B. (2008). Patterns in diversity: geochemical analyses and settlement changes during the Iron Age-Early Medieval time in the Lake Mälaren region, Sweden. Edita Västra Aros.
Jenkins, D. A. (1989). Trace element geochemistry in archaeological sites. Department of Biochemistry and Soil Science, University College of North Wales, Bangor, Gwynedd LL57 2UW, Wales.
Jenkins, D. A. (1988). Trace element analysis in the study of ancient metallurgy. In: Ellis Jones, J. (ed.), Aspects of Ancient Mining and Metallurgy. Acta of B.S.A. Centenary Conference 1986, UCNW, Bangor.
Jafari, J. (2013). The first Season of Archaeological study in Tape rivi, Samangan plain. Tehran: ICAR Unpublished Archive Report (in Persian).
Jafari, J. (2015). The second Season of Archaeological study in Tape rivi, Samangan plain. Tehran: ICAR Unpublished Archive Report (in Persian).
Jafari, J. and Thomalsky, J. (2016). The third Season of Archaeological Studies in Tape rivi, Samangan plain. Tehran: ICAR Unpublished Archive Report (in Persian).
Kawahata, H. Yamashita, S., Yamaoka, K., Okai, T., Shimoda, G. and Imai, N. (2014). Heavy metal pollution in Ancient Nara, Japan, during the eighth century. Kawahata et al. Progress in Earth and Planetary Science 2014, 1:15
King, S. M.  (2007). The spatial organization of food sharing in early postclassic households: an application of soil chemistry in ancient Oaxaxa, Mexico, Journal of Archaeological Science. 34, 1-16.
Knudson, K. J., Frink, L., Hoffman, B. W. and Price, T. D. (2004). Chemical characterization of arctic soils: activity area analysis in contemporary Yup’ik Fish Camps using ICP-AES, Journal of Archaeological Science, 31, 443-456.
Linderholm, J. (2007). Soil chemical surveying: A path to a deeper understanding of prehistoric sites and societies in Sweden. Geoarchaeology, 22 (4), 417-438.
O´Neill, P (1993). Environmental Chemistry. 2nd ed. London
Olsen, S. R. and Sommers, L. E. (1982). Phosphorus. In: Page, A.L., Ed., Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, 403-430.
Iyengar, V. and Wolttiez, j. (1988). Trace elements in human clinical specimens: evaluation of literature data to identify reference values. Clinical Chemistry, 343, 474-481.
Parnell, J. J. (2001). Soil chemical analysis of activity areas in the archaeological site of Piedras Negras, Guatemala, MSc thesis, faculty of Brigham Young University.
Rapp, J. G. and Hill, C. (1998). Geoarchaeology, the Earth-science approach to archaeological interpretation, Yale University Press, New Haven and London.
Retallack, G. J. (2001). Soils of the past. An introduction to Paleopedology. 2nd ed. Oxford.
Rouhani, A. and Shahivand, R. (2020). Potential ecological risk assessment of heavy metals in archaeology on an example of the Tappe Rivi (Iran). SN Appl. Sci, 2, 1277. https://doi.org/10.1007/s42452-020-3085-5
Rouhani, A. (2020). Hydrochemistry and quality assessment of qanat water compared to wells using laboratory studies and literature review (case study of Samalghan plain, North Khorasan, Iran). Model. Earth Syst. Environ, 7, 389–40. https://doi.org/10.1007/s40808-020-01014-2
Rouhani, A., Azimzadeh, H. R., Sotoudeh, A., Thomalsky, J. and Emami, H. (2021). Geochemical analysis of multi-element in archaeological soils from Tappe Rivi in Northeast Iran. Acta Geochimica, 41, 132-146. https://doi.org/10.1007/s11631-021-00500-3
Ryan Roth, L. T. (2002). Total Phosphorus use area determination of Lucayan settlements, middle Caicos, Turks and Caicos Islands, British West Indies, MA thesis Department of Archaeology, University of Calgary, Alberta.
Tyleeote, R. F. (1986). A History of Metallurgy in the British Isles. The Institute of Metals, Loadon.
Thomalsky, J. (2016). Tappeh Rivi, Iran: Die iranisch-deutschen Arbeiten des Jahres 2016. Berlin: Deutsches Archäologisches Institut.
 Terry, E. R., Hardin, P. J., Houston, S. D., Nelson, S. D., Jackson, M. W., Carr, J. and Parnell, J. (2000). Quantitative Phosphorus measurement: a field test procedure for archaeological site analysis at Piedras Negras, Guatemala.Geoarchaeology, 15, 151-166.
Wells, E. C. (2004). Investigating activity patterns in prehispanic plazas: weak acidextraction ICP-AES analysis of anthrosols at Classic period El Coyote, northwestern Honduras. Archaeometry, 46, 67–84.
Wells, E. C. (2006). Soil, human society and the environment. In Frossard, Emmanuel, Blum, Winfried E. H & Warkentin, Benno P (Eds). Function of soils for human societies and the environment. Geological Society, London, Special Publications, 125-132.
Wells, E. C., Terry, R. E., Parnell, J., Hardin, P. J., Jackson, M.W. and Houston, S. D. (2000). Chemical analyses of ancient anthrosols in residential areas at Piedras Negras”, Guatemala, Journal of Archaeological Science, 27, 449-462.
 
 
 
 
Volume 2, Issue 1
June 2022
Pages 11-17
  • Receive Date: 07 April 2022
  • Revise Date: 15 May 2022
  • Accept Date: 01 June 2022
  • Publish Date: 20 June 2022